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Abstract

Adverse selection in procurement arises when low-cost bidders are also low-

quality suppliers. We propose a mechanism called LoLA which, under some condi-

tions, is the best incentive-compatible mechanism for maximizing any combination

of buyer’s and social surplus in the presence of adverse selection. The LoLA features

a floor (or minimum) price, and a reserve (or maximum) price. Conveniently, the

LoLA has a dominant strategy equilibrium that, under mild regularity conditions,

is unique. We perform a counterfactual experiment on Italian government procure-

ment auctions: we compute the gain that the government could have made, had it

used the optimal mechanism (which happens to be a LoLA), relative to a first-price

auction, which is the format the government actually used.
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1 Introduction

When the quality of a good or service is non-contractible, a buyer holding a standard pro-

curement auction faces an adverse selection (or “lemons”) problem: the sellers who bid

aggressively may be the low-quality ones. This problem is pervasive in procurement set-

tings: cheap suppliers may provide low quality (maybe because they use shoddy materials

and less-qualified labor), whereas high-quality contractors may have high costs and thus

be unwilling to bid aggressively. In this case, we say that the buyer has quality concerns.

To deal with the adverse selection problem, it is common practice to reject abnormally

low bids.1 Some procurement rules deem bids to be “abnormally low” if they fall much

below an engineering estimate of the work’s cost.2 Other rules, such as the “average bid

auction” (ABA), disqualify bids that fall in extremely low (as well as extremely high)

quantiles of the bid distribution. The rationale for disqualifying low bids is to weed out

low-quality bidders.3

This paper derives the optimal mechanism for buying a good or service when there

is an adverse selection problem. We call it a “lowball lottery auction” (LoLA). A LoLA

with floor price pL and reserve price pH is a (reverse) second-price sealed-bid auction in

which bids below pL and above pH are not allowed, and ties are broken uniformly. When

two or more bidders bid pL, one of these bidders is randomly selected to supply the good

and is paid pL. In a LoLA, no bid is ever rejected for being too low: cheap suppliers are

allowed to compete, but they are not allowed to bid too aggressively, and so they are not

preferentially selected.

In a LoLA, the buyer effectively commits to pay no less than a (publicly announced)

floor price pL. From a bidder’s perspective, price competition is less intense if the floor

price is higher. When pL is set at a sufficiently high level, price competition is completely

eliminated and the winning bidder is selected randomly. At the other extreme, when pL

is set below the lowest possible cost, the LoLA becomes a standard second-price auction.

Interestingly, floor prices are a feature of certain Medicare auctions4 and of some Japanese

1The World Bank provides guidance for identifying abnormally low bids and deciding whether to accept
or reject them. See World Bank (2016).

2Such is the case, for example, in the Korean procurement mechanism studied in Eun (2018).
3See Decarolis and Klein (2011), p. 2.
4Bids to supply the government with durable medical equipment, prosthetics, and orthotics, are limited

by both ceilings and floors. See https://www.cms.gov/dmeposfeesched/downloads/dme10 c summary.pdf.
We thank a referee for pointing this out.
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procurement auctions.5

We show that, under mild regularity assumptions, the buyer’s expected surplus is

maximized by a LoLA among all interim IC and IR mechanisms. To our knowledge, this

is the first time that a floor price emerges as part of an optimal selling mechanism.

Intuitively, a floor price is most helpful when the buyer’s quality concerns come from the

lower-cost suppliers: in this case, the floor price can make it less likely that most-aggressive

bidders – who, presumably, are also the lowest-cost ones – win the auction. Setting the

buyer-optimal floor price pL entails a trade-off: lowering pL saves the buyer some money,

but it increases the quality concerns associated with selecting a cheaper supplier. We will

show that if the quality concerns are more severe, in a sense that will be made formal later,

then the optimal floor price p∗L is higher. If the auction designer maximizes social welfare

rather than buyer surplus, then the optimal mechanism remains a LoLA but, under fairly

general conditions, one with a higher optimal p∗L. This is intuitive because a benevolent

designer does not internalize the buyer’s monetary savings from lowering pL.

The buyer may also choose to augment the LoLA with a “reserve price” that excludes

any bid above a certain threshold. A LoLA with a reserve price is reminiscent of the

ABA in that both high and low bids are curbed. But in a LoLA the reserve and floor

prices are exogenous, whereas in an ABA the disqualification thresholds are a function of

the bid distribution. And, whereas the ABA has a continuum of symmetric pure-strategy

equilibria, none of which is in (even weakly) dominant strategies (see Decarolis 2014),

under mild conditions, the LoLA has a unique equilibrium, and this equilibrium is in

weakly dominant strategies. The theoretical and practical concerns with the ABA are

documented by Albano et al. (2016), Decarolis (2014, 2018), and Conley and Decarolis

(2016).

Due to the adverse selection problem, in a standard first- or second-price auction both

buyer surplus and social welfare may well decrease as the number of potential bidders

increases. In the optimal LoLA, however, increasing the number of potential bidders

improves both the buyer surplus and the social welfare. This difference highlights the role

that the floor price p∗L plays in protecting the auctioneer from adverse selection.6

To illustrate the gains from the optimal mechanism, we perform a counterfactual ex-

5See Chassang and Ortner (2019).
6Calzolari and Spagnolo (2006) show that, in a dynamic model where the provision of non-contractible

quality is sustained by the threat of exclusion, the auctioneer may want to limit the number of bidders.
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periment on Italian government procurement auctions. Using information generously pro-

vided by Francesco Decarolis, and making some assumptions about how quality enters the

government’s objective function, we compute the gain that the government could have

made, had it used the optimal mechanism (which happens to be a LoLA), relative to a

first-price auction, which is the format the government actually used. We find that, in a

reasonably calibrated model, these savings can be nontrivial.

Finally, we created two software applications and made them publicly available.7 These

applications compute the buyer-optimal procurement mechanisms in the presence of qual-

ity concerns, whether or not the optimal mechanism is a LoLA.

The two closest papers in the literature are Myerson (1982) and Manelli and Vincent

(1995). When there is no lemons problem, first- and second-price auctions are both socially

optimal and maximize the buyer’s surplus (Myerson 1982). When the lemons problem is

sufficiently severe, Manelli and Vincent (1995) show that it is optimal to select the wining

bidder randomly. Both results obtain as polar cases in our setting because, indeed, both

mechanisms are LoLAs for suitably chosen values of pL. Manelli and Vincent (2004) study

several functional-form examples with two players, in which certain sequential mechanisms

maximize the social surplus in a “lemons” environment. Our implementation, in contrast,

is through a sealed-bid auction. Of course, if the functional form in one of their examples

satisfies our assumptions, their optimal mechanism and ours must yield the same allocation

and payoffs.8

The formal literature on (non-optimal) procurement in the presence of quality concerns

goes back to, at least, Dini et al. (2006) and Albano et al. (2006). The latter have shown

that a mechanism in the spirit of the ABA admits a continuum of equilibria in which

the bidders coordinate to keep prices high. Decarolis (2014) documented empirically the

severity of the lemons problem in first-price auctions compared to ABAs. The drawbacks

of the ABA format are documented empirically by Conley and Decarolis (2016). Decarolis

(2018) compares the performance of ABA and first-price auctions. When contracts are

allocated using the ABA, Decarolis (2018) shows that bidders bid extremely close to each

other, which can be interpreted as evidence of an “approximately random” allocation. The

winner’s quality seems to be better when the winner is chosen “randomly,” suggesting that

7See https://github.com/forket86/Software-1-Optimal-LoLA and https://github.com/forket86/Software-
2-Optimal-Mechanism

8This is the case for the functional form studied in their Theorem 2. It should be noted that Manelli
and Vincent’s (2004) analysis is not a special case of ours because some of their examples do not satisfy
our assumptions.
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these auctions suffer from adverse selection.9

A sizable theoretical literature looks at settings where adverse selection arises endoge-

nously through the winning bidder’s strategic choice of performance (performing may mean

paying one’s bid or, in a procurement context, providing a suitable good or service). In

this literature, after the winning bidder is selected, some uncertainty is realized that may

lead the winning bidder to declare bankruptcy rather than perform. Because the option

to declare bankruptcy is valuable, bidders who are more likely to take advantage of the

option will bid more aggressively. Since more-aggressive bidders are less likely to perform,

the auctioneer is exposed to adverse selection. This “strategic performance” paradigm

blends moral hazard and adverse selection; our model, in contrast, may be regarded as a

pure adverse selection model in the spirit of Manelli and Vincent (1995).

Within the “strategic performance” literature, Waehrer (2007) compares efficiency and

revenue of first- and second-price auctions under different specifications for what happens

after a default. Spulber (2000) analyzes first-price auctions, and shows that damages for

non-performance can play a key role in achieving allocational efficiency. Rhodes-Kropf and

Viswanathan (2000) and Zheng (2001) study a setting where budget-constrained bidders

borrow money in order to place their bid, and may later default on their loan; both papers

study the efficiency of different contractual arrangements between bidders and lenders.

Board (2007) compares first- and second-price auctions and finds that, depending on what

happens to the assets of a bankrupt winner, one or the other auction format is preferred

by the auctioneer. None of these papers seeks to identify the optimal auction mechanism.

Within this “strategic performance” paradigm, two papers adopt a mechanism design

approach. Chillemi and Mezzetti (2014) study a complex design problem in which the

mechanism determines not only the winning bidder, but – also – the type of damages to

be paid in case of non-performance. Closer to our approach, Burguet et al. (2012) take as

given what happens in case of non-performance. In both papers, the optimal mechanism

features pooling (the random choice of winner) only among types that underperform with

probability zero – who are also the least-aggressive bidders. In a procurement auction, this

type of pooling can be implemented with a price cap but not with a price floor: hence, as

stated by Burguet et al. (2012, fn. 25), “a price floor . . . is never optimal.” By contrast,

our mechanism leverages price floors to manage adverse selection.

9Specifically, Decarolis (2018) shows that delays and cost overruns tends to be lower in the ABA than
in a first-price auction (where contracts are allocated to the lowest bidder).
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Technically, our model differs from “strategic performance” models in the role that the

winning bid plays in determining ex-post performance. In the “strategic performance”

literature, equilibrium performance depends on the winning bid’s level: a higher winning

bid is less likely to force the winner to declare bankruptcy. Thus, conditional on the win-

ning bidder’s type, reducing competition among bidders improves ex-post performance.

In our paper, by contrast, conditional on the winning bidder’s type, there is no correla-

tion between the winning bid’s level and ex-post performance. This lack of conditional

correlation reflects the “pure adverse selection” nature of the model and is, admittedly,

a stark feature. However, this feature does not preclude using our framework to model

quality concerns arising from ex-post performance. Indeed, in Section 5.2 we extend our

framework to model ex-post performance.10

Finally, Che and Kim (2010) compare auction formats that differ in the kind of legal

tender that is allowed in the auction. The value of some legal tenders can depend on the

bidder’s unobservable type (e.g., if the tender is shares in entities that are managed by the

bidder), which can create an adverse selection risk for the auctioneer. The value of cash is

independent of the bidder’s type. Che and Kim (2010) prove that the revenue-maximizing

auction format uses cash, thereby completely eliminating adverse selection. Our setting is

different in that bidders are restricted to bidding with cash, and yet an adverse selection

problem exists. Furthermore, we do not allow mechanisms that eliminate adverse selection

entirely, except for those that also eliminate competition entirely (random allocation).

This paper abstracts from both collusion and endogenous supplier entry. In a dynamic

model of bidder collusion, Chassang and Ortner (2019) document theoretically and em-

pirically that, counterintuitively, introducing minimum prices can lower the winning-bid

distribution.11 Their evidence suggests that introducing minimum prices causes potential

suppliers to enter the auction, which helps destabilize cartels.

In sum, our first and main contribution relative to the literature is that we charac-

terize the optimal procurement mechanism in the presence of pure adverse selection (i.e.,

abstracting from strategic performance considerations). The optimal mechanism was not

known before, except in the extreme case where the adverse selection was so severe that

random assignment was optimal. Our proposed mechanism is similar enough to the exist-

ing procurement formats that, we think, it could be perceived as “natural” by practitioners

and, thus, implemented in practice. A second contribution is the calibration exercise with

10In our extension the winning bid is, effectively, a “sunk cost” that does not affect performance.
11Calzolari and Spagnolo (2006) also study repeated procurement in the presence of quality concerns.
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Italian procurement data: we show that the LoLA is in fact the optimal mechanism in that

setting, and quantify the gain over the existing procurement protocol. We view the cali-

bration method as the main contribution of this exercise, because the method has external

validity beyond the specific setting of Italian auctions. A third, ancillary contribution, is a

pair of software applications that we have created and made available for the computation

of the optimal mechanism (which may or may not be a LoLA).12

The paper proceeds as follows. The next section contains a simple illustrative exam-

ple. Section 3 lays out the model. Section 4 derives the optimal mechanism and some

comparative static results. Section 5 features several extensions. Section 6 analyzes the

Italian procurement auctions. Section 7 concludes.

2 An illustrative example

This section provides a functional form example to build intuition for the general results

to follow.

A buyer faces two suppliers. Each supplier’s production cost ci is privately known and

is an i.i.d. random variable distributed uniformly on [0, 1]. The buyer’s willingness to pay

for supplier i’s product is given by:

v(ci) ≡ 4 ci − 2 c2i (1)

The function v(·) is increasing and concave on [0, 1], which means that the buyer’s use value

increases with production cost, albeit at a decreasing rate. The increasingness captures

the lemons problem: more-reliable suppliers have higher costs. The concavity means,

intuitively, that the lemons problem is more severe where the function v(·) increases more

steeply, i.e., at lower values of c.

A LoLA coincides with a second-price auction except when both bidders bid less than

pL, in which case either wins with equal probability and is paid pL. In a LoLA, it is a

dominant strategy to bid one’s cost; this will be proved in Theorem 1. Figure 1 shows the

outcome of the LoLA with a floor price pL ∈ (0, 1), for any realization of the suppliers’

costs.

12Reference to this software is provided in footnote 21.
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Figure 1: Outcome of the LoLA with floor price pL

Note that setting pL = 0 yields the second price auction, and pL = 1 yields the random as-

signment mechanism. In the inner-square region, there is no competition between bidders.

This happens to be the region where, intuitively, the lemons problem is worse, because

the function v(·) is steeper. Thus, in the LoLA, the buyer gives up the monetary benefits

of competition precisely in the region where the lemons problem is most severe, but not

in other regions.

The expected buyer surplus generated by a LoLA with threshold price pL is:

V (pL) =

∫ 1

pL

(∫ c2

0

[v(c1)− c2] dc1

)
dc2 +

∫ 1

pL

(∫ c1

0

[v(c2)− c1] dc2

)
dc1

+

∫ pL

0

∫ pL

0

[
1

2
v(c1) +

1

2
v(c2)− pL

]
dc1dc2.

=
1

3
+

1

3
· (pL)3 · (1− pL).

(2)

The first two double integrals cover the upper- and right-trapezoid regions respectively,

where bidder 2 (resp., 1) bids more than its opponent and above the “floor price” pL. In

this case, the LoLA prescribes that the lowest bidder supplies the good and is paid the

second-lowest bid c2. The third double integral covers the inner-square region where

both bidders bid below pL. In this case, the LoLA prescribes that one of these bidders

is randomly selected to supply the good and is paid pL. The last equality follows from
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Figure 2: Expected buyer surplus V and social surplus S. V is maximal at pL
∗ = 3/4 under a LoLA

with floor price pL.

substituting for v(·) from (1) and solving the integrals.

The expected social surplus generated by a LoLA with threshold price pL is:

S(pL) = 2

∫ 1

pL

∫ c2

0

[v(c1)− c1] dc1dc2 +

∫ pL

0

∫ pL

0

[
1

2
(v(c1)− c1) +

1

2
(v(c2)− c2)

]
dc1dc2

=
2

3
+

1

3
·
(
3

2
− pL

)
· (pL)3

(3)

Figure 2 graphs the expected buyer surplus V and expected social surplus S as a

function of pL. The function V attains a maximum of about 0.37. By comparison, the

second price auction and the random assignment mechanism, which correspond to LoLAs

with pL = 0 and pL = 1, respectively, achieve a buyer’s surplus of roughly 0.33 each.

Therefore, in this example the buyer-optimal LoLA is seen to improve the buyer’s surplus

by more than 10% relative to either the first price auction or the random assignment

mechanism. The fact that the buyer-optimal pL is interior indicates that the lemons
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problem is severe enough that the first price auction is not optimal, but not so severe that

random allocation is optimal (i.e., Manelli and Vincent 1995 does not apply here).

By contrast, the expected social surplus S(·) is monotonically increasing in pL, which

implies that the socially optimal LoLA has pL = 1. Therefore, in this example, the random

allocation is socially optimal but not buyer-optimal. That V (·) peaks earlier than S(·) is a
general property: the buyer prefers a lower pL than the social planner (see Proposition 3).

Intuitively, this is because a benevolent designer does not internalize the buyer’s monetary

savings from lowering pL.

How would an ABA perform in this scenario? Decarolis (2014, 2018) and Conley

and Decarolis (2016) have shown that the ABA is vulnerable to multiple coordination

equilibria, some of which can be very unfavorable for the auctioneer. To illustrate their

argument, allow for N > 2 bidders with the same uniform cost distribution. Define an

(admittedly stylized) ABA as an auction where the lowest bidder wins, all bidders are

paid their bid, but bids in the lowest or highest 1/N -th quantile of the bid distribution are

discarded. Then, the strategy profile in which all bidders bid b is an equilibrium. To see

this, observe that if bidder i deviates from b, its bid belongs either to the 1/N -th highest,

or to the 1/N -th lowest quantile, and thus is automatically discarded. In this equilibrium,

the buyer’s expected surplus equals E[v(ci)] − b, which can be made arbitrarily small by

making b arbitrarily large. If, for example, b = 1 then the buyer’s surplus equals 0.33,

compared with about 0.37 that is attainable with the optimal LoLA with p∗L = 3/4.

3 Model

A buyer with known type ξ seeks to procure an indivisible good from one ofN > 1 potential

suppliers. The suppliers’ costs c1, ..., cN are elements of the interval [cL, cH ]. These costs

are privately known, and they are independently drawn from the same distribution with

density f . If a supplier with cost c is selected and paid m, the supplier’s profit is

m− c,

and the buyer’s surplus is

v(c, ξ)−m.
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The function v represents the buyer’s value from procuring the good from a buyer with

cost c. If v is independent of c, we have the standard setting of Myerson (1981) in reverse,

because the auctioneer buys rather than sells. If v is increasing in c, there are quality

concerns. The scalar ξ parameterizes the severity of the buyer’s quality concerns: we

assume that vc ξ(c, ξ) ≥ 0, meaning that when ξ is larger, intuitively, the quality concerns

are more severe. For analytical convenience, we also assume v(cL, ξ) ≥ cL, meaning that

there are gains from trade at the lowest supplier cost. This assumption does not imply

that there are gains from trade for all cost realizations.

The virtual valuation function is defined as:

w(c; ξ, β) ≡ v(c; ξ)− c− β
F (c)

f(c)
. (4)

The ratio F (c)
f(c)

represents the information rent earned by a supplier with type c. As we will

show later, the scaling parameter β ∈ [0, 1] encodes the designer’s concern for the buyer’s

share of the social surplus. When β = 1 the designer is solely focused on maximizing the

buyer’s surplus, as in Myerson (1981). When β = 0 the designer focuses entirely on social

surplus. Interior values of β capture intermediate degrees of concern for buyer vs. social

surplus.

From now on, we maintain the following regularity assumption.

Assumption 1 (Regularity of the virtual valuation function). The virtual valuation func-

tion w(c; ξ, β) is quasiconcave in c.

If w is decreasing in c, the lemons problem is mild or absent. In this special case of

Assumption 1, Myerson (1981) proved that a second price auction is optimal. Assumption

1 allows for w to increase, because it only requires w to be single-peaked. The slope of w

is partly determined by the slope of v. If v is sharply increasing, there is a severe lemons

problem and w may be increasing in c.

Assumption 1 will be used to establish the optimality of a LoLA (Theorem 1). A

sufficient (but far from necessary) condition for this assumption to hold is that w be

concave in c. If v is concave and F
f
is convex, then w is concave. The ratio F

f
is convex

if F is a Power distribution (of which the Uniform distribution is special case), a Pareto

distribution, or an Exponential distribution.13

13If F is a Power distribution then F
f is linear. If F (c) = 1 − x−α is a Pareto distribution F

f (x) is
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The buyer can commit to any trading mechanism. By the revelation principle, any

equilibrium outcome of any trading procedure is also the truth-telling equilibrium outcome

of a direct mechanism. A direct mechanism is a set of 2N functions

qi(ci, c−i), mi(ci, c−i) (5)

that, for each each i and any reported type profile c, specify the probability that supplier

i sells the object, and the expected payment that it receives from the buyer.

4 Results

We are interested in direct mechanisms that maximize any weighted average of the ex-

pected buyer surplus and the expected social surplus, with respective weights β and 1−β,

for any β ∈ [0, 1]. Formally, we solve the following maximization problem:

proportional to xα+1 − x which is convex in x. If F (x) = 1− e−λx is an Exponential distribution F
f (x) is

proportional to eλx − 1 which is convex in x.
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Weighted welfare maximization problem

max
q,m

∫
[cL,cH ]N

{
N∑
i=1

[
[v(ci, ξ)− (1− β) · ci] · qi(ci, c−i)− β ·mi(ci, c−i)

]} N∏
j=1

f(cj) dcj

(6)

subject to, for all i, ci, c
′
i ∈ [cL, cH ], c−i ∈ [cL, cH ]

N−1:

N∑
i=1

qi(ci, c−i) ≤ 1 (7)

qi(ci, c−i) ≥ 0 (8)∫
[cL,cH ]N−1

[mi(ci, c−i)− ci · qi(ci, c−i)]
∏
j ̸=i

f(cj) dcj

≥
∫
[cL,cH ]N−1

[mi(c
′
i, c−i)− ci · qi(c′i, c−i)]

∏
j ̸=i

f(cj) dcj

(9)

∫
[cL,cH ]N−1

[mi(ci, c−i)− ci · qi(ci, c−i)]
∏
j ̸=i

f(cj) dcj ≥ 0. (10)

The inequalities in (9) are the standard (interim) incentive compatibility constraints.

The inequalities in (10) are (interim) individual rationality constraints; these constraints

capture the idea that suppliers are free not to bid.

In this section we prove that, for any ξ and any β ∈ [0, 1], the above optimization

problem is solved by a LoLA with suitably chosen “minimum price” pL and reserve price

pH . In the optimal LoLA, it is an equilibrium for all suppliers to bid their cost (“sincere

bidding”), and this equilibrium generates probabilities qi(ci, c−i) and payments mi(ci, c−i)

that solve the above optimization problem. The LoLA is formally defined next.

Lowball lottery auction (LoLA): formal definition

A LoLA with floor price pL and reserve price pH is a (reverse) second-price sealed-bid

auction in which bids below pL and above pH are not allowed, and ties are broken

uniformly.

The next proposition is the main result of the paper.
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Theorem 1 (Optimality of the LoLA). In a LoLA with any pL ≤ pH , it is a (weakly)

dominant strategy for all suppliers to bid their cost. Furthermore, if Assumption 1 holds,

the resulting equilibrium implements the solution to optimization problem (6-10) provided

that the reserve and floor prices are set to:

pH
∗ = sup{c ∈ [cL, cH ] s.t. w(c; ξ, β) > 0}, (11)

and

pL
∗ = max {p ∈ [cL, cH ] s.t. w(p; ξ, β) ≥ E [w(c; ξ, β) | c ≤ p]} . (12)

Proof. See Appendix A. ■

The reserve price pH
∗ defined in (11) is the same as the reserve price in standard

auctions: it is the type at which the virtual valuation w becomes negative. The inequality

within curly brackets in equation (12) captures the tradeoff that determines the optimal

floor price pL. If pL is increased marginally, types slightly above pL win with positive

probability. These “marginal” types generate virtual surplus close to w(pL; ξ, β), which

is the left-hand side of the inequality in (12). If, instead, pL is not increased, then the

marginal types are excluded and the virtual surplus generated is the average among all

types below pL, which is the right-hand side of the inequality in (12). The optimal floor

price, if interior, equates the two: the equality reflects the optimal way to offer the same

interim allocation to an interval of types below pL.
14

Equation (12) covers three different scenarios: the one in which standard auctions are

optimal (Myerson 1981), the scenario in which random mechanims are optimal (Manelli

and Vincent 1995), and our intermediate scenario where a LoLA is optimal. If w is strictly

decreasing in c, the inequality in equation (12) holds only for p = cL, hence p
∗
L = cL is the

optimal floor price. This is the standard Myerson case in which the optimal mechanism

is a standard first- or second-price auction. If, instead, w is strictly increasing in c, this

inequality holds for all p in [cL, cH ]. Then, the max operator in (12) uniquely selects

p∗L = cH as the optimal floor price: this is the random mechanism identified by Manelli

and Vincent (1995). Finally, in the intermediate scenario where w peaks in the interior of

[cL, cH ], the optimal floor price can be in the interior of [cL, cH ]. To build intuition for this

case, focus first on the case where w is negative in a neighborhood of cH . In this case the

optimal reserve price is interior, and strictly larger than the optimal floor price which is

14See, e.g., Section 6 in Bulow and Roberts (1989).
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also interior. The first claim follows directly from equation (11). The second claim holds

because the inequality in equation (12) must fail at any p ≥ p∗H , and must hold strictly

at p = cL; therefore, by continuity, the inequality must hold with equality at some point

in the interior of [cL, p
∗
H ]. This implies that the optimal floor price is interior and strictly

lower than the optimal reserve price. This logic extends to the case where w is positive

over its entire domain: in this case it is optimal not to use a reserve price; however, the

optimal floor price may still exceed cL.

The challenge in proving Theorem 1 is that the monotonicity of the allocation function,

i.e., the property that lower-cost bidders must win with weakly higher expected probability,

can be binding (unless the optimal floor price equals cL). Hence the standard proof

technique, which hinges on side-stepping all monotonicity constraints, cannot be applied

in our setting. Our approach relies on finding explicit expressions for the shadow values

of violating these constraints, for all types. This is the most innovative part of our proof,

and it is done in Lemma 4.

A number of comparative static results about pH
∗ and pL

∗ follow immediately from

conditions (11) and (12).

Proposition 1 (Comparative statics on pH
∗ and pL

∗).

1. Floor and reserve prices pL
∗ and pH

∗ are independent of the number of bidders.

2. The floor price is increasing in the severity of the lemons problem, i.e., pL
∗ is non-

decreasing in ξ for any β.

3. If F is log-concave, the floor price is increasing in the degree to which the designer

takes social welfare into account, i.e., pL
∗ is nonincreasing in β for any ξ.

4. The reserve price is increasing in the degree to which the designer takes social welfare

into account, i.e., pH
∗ is decreasing in β for any ξ.

Proof. Part 1 Conditions (11) and (12) do not depend on N .

Part 2 Condition (12) is equivalent to:

pL
∗ = max

{
p ∈ [cL, cH ] s.t.

∫ p

cL

wc(c; ξ, β)·F (c)·dc ≥ 0

}
. (13)
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(To check this, integrate by parts the inequality in 13). Because vcξ ≥ 0 by assumption,

increasing ξ shifts the function wc (at least weakly) upward (see eq. 4), and then condition

(13) yields the result.

Part 3 Log-concavity of F implies that the ratio F (c)
f(c)

is increasing in c, therefore

increasing β shifts the function wc down (see eq. 4), and then condition (13) yields the

result.

Part 4 Increasing β shifts the function w downward (see eq. 4), and then condition

(11) yields the result. ■

The property in Part 1 is shared by the reserve price in a standard auction (Myerson

1981). Part 2 says that the floor price is increasing in the parameter ξ that encodes the

severity of the lemons problem. This is intuitive, because the only reason to have a floor

price is to guard against lowball bidders. It is interesting that this effect obtains even

if β = 0, i.e., when the designer maximizes social welfare. Part 3 requires log-concavity.

Since most commonly-used F ’s are log-concave,15 “typically,” pL
∗ will be nonincreasing

in β. The economic intuition for this results was provided earlier at the end of Section 2:

the buyer prefers a lower pL than the social planner because a benevolent designer does

not internalize the buyer’s monetary savings from lowering pL.

Next, we show that increasing the number of potential suppliers N increases the

weighted welfare generated by the optimal LoLA.

Proposition 2 (Effect of the number of suppliers on weighted welfare). Increasing the

number of potential suppliers N increases the weighted welfare generated by the optimal

LoLA.

Proof. See Appendix A. ■

This result is not immediate because, as N increases, the adverse selection problem

worsens. Indeed, if a naive auctioneer used a standard first- or second-price auction rather

than a LoLA, weighted welfare would decrease with N , at least for large N . To see this,

assume that the optimal LoLA has an interior floor price. Then the function w(·) must be

strictly increasing near cL. In a standard first- or second-price auction, expected weighted

15See Tables 1 and 3 in Bagnoli and Bergstrom (2005). Log-concavity of F obtains not only whenever
f is log-concave (Bagnoli and Bergstrom 2005, Theorem 1) but also, often, when f is not log-concave.
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welfare equals E[w(c(1))], where c(1) denotes the lowest cost among all N suppliers. As

N increases, the distribution of c(1) shifts toward the left and thus, eventually, E[w(c(1)]
must decrease with N . This observation highlights the role of the optimal floor price p∗L
in protecting the auctioneer from an adverse selection problem that worsens as N grows.

The next result concerns uniqueness. In what follows, “sincere bidding” means that

all types between pL and pH bid their cost, and all types below pL bid pL.

Proposition 3 (Sincere bidding is the unique equilibrium). Consider any LoLA with

reserve price pH < cH and three or more bidders. If the density f is positive on [cL, cH ]

then the equilibrium outcome is unique almost surely. Up to changes of the bid functions

on a set of measure zero, any equilibrium strategy profile entails sincere bidding for types

with cost above pL, and bidding pL for all other types.

Proof. The proof follows almost verbatim that of Proposition 1 in Blume and Heidhues

(2004). ■

This result is a direct consequence of Corollary 1 in Blume and Heidhues (2004), who

study uniqueness in Vickrey auctions. The reserve price is needed to rule out equilibria

of the following form. Fix some ĉ ∈ (pL, cH). Bidder 1 bids sincerely if its cost is below

ĉ, and bids ĉ otherwise. All other bidders bid sincerely if their cost is below ĉ, and bid

cH otherwise. In the absence of a reserve price, these strategies constitute an equilibrium.

With a reserve price pH < cH , however, if bidder 1’s cost exceeds the reserve price then

bidder 1 prefers not to bid at all rather than to follow the recommended strategy.

5 Extensions

5.1 Reinterpreting v as willingness to pay for expected quality

So far, we have assumed that the auctioneer’s willingness to pay v(c, ξ) is an increasing

function of cost. This model can be thought of as the “reduced form” of a more complex

model where a second dimension is present: the quality xi provided by each supplier. We

now spell out this model.

Assume that the auctioneer only cares about quality and, as before, each supplier cares

only about its cost. Each supplier draws its quality and cost from a joint distribution
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Ψ(c, x; ξ). Adverse selection arises when cost c and quality x are positively correlated.

Quality, like cost, is non-contractible.16

In this setting, types are two-dimensional vectors (c, x). However, it turns out that

there is no loss of generality in restricting attention to mechanisms qi(ci, c−i), mi(ci, c−i)

which, as in (5), depend on c but not on x (see Appendix B.1 for a proof of this statement).

This implies that quality x only shows up in the objective function of the weighted welfare

maximization problem (6), but not in any of the constraints (7-10). After integrating out

x in the objective function, the buyer’s willingness to pay becomes

v(c, ξ) =

∫
x dΨ(x | c, ξ). (14)

If x and c are stochastically affiliated, the expectation v(c, ξ) is nondecreasing in c.

Thus, the function v(c, ξ), which is a primitive of the baseline model of Section 3, can

be interpreted in the present two-dimensional setting as the auctioneer’s willingness to

pay for the expected quality supplied by a bidder with cost c. In this interpretation, the

parameter ξ modulates the correlation between cost and quality. Equation (14) will be

used in Section 6.2 to construct the auctioneer’s willingness to pay function v(c, ξ) based

on the winning suppliers’ performance in Italian procurement auctions.

5.2 Reinterpreting adverse selection as low supplier performance

So far, the auctioneer’s willingness to pay for supplier i’s good v(ci) has been assumed to

be an exogenous function of the supplier’s cost ci. In this section, we sketch out a setting

in which the winning supplier’s cost and the auctioneer’s willingness to pay are determined

endogenously by the winning bidder’s performance. The positive correlation between the

winning supplier’s cost and the auctioneer’s willingness to pay will emerge endogenously.

For expositional simplicity, we restrict attention to a functional form example.

In what follows, there is no exogenously assigned cost c to each supplier before the

auction. Rather, the cost of supplying the good is determined after the auction, by the

winning supplier’s choice of performance quality. Assume that, after the auction, the

winning bidder must exert non-contractible effort e ∈ [0, 1] in order to fulfill its contrac-

16If quality, cost, or a combination of the two, were contractible, it would be beneficial for the auctioneer
to use scoring rules.
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tual obligations. The cost of effort is γ(e, t) = 1 + t(e − 1). The parameter t ∈ [0, 1] is

supplier-specific and captures heterogeneity across suppliers. Higher effort levels increase

performance quality. The incentive to exert effort comes from a contractual specification

that imposes a fine on the supplier if its performance is inadequate. The expected fine

resulting from any effort level e is given by ϕ(e) = (e− 1)2. The function ϕ(·) is decreas-
ing on [0, 1], i.e., higher effort results in a lower expected fine. Expected fines may be

interpreted as a reduced-form proxy for any expected renegotiation costs incurred by the

supplier, because renegotiation is more likely to occur when the winning supplier chooses

a lower performance level.

The supplier seeks to minimize its overall cost inclusive of any fines, so the optimal

effort level is given by

e∗(t) = argmin
e

γ(e, t) + ϕ(e) = 1− t

2
. (15)

This expression represents the performance level of a supplier with type t. We assume

that the auctioneer prefers higher effort, i.e., higher performance quality (and less renego-

tiation). Hence, expression (15) implies that suppliers with higher type t are worse from

the auctioneer’s viewpoint.

The resulting overall cost for the winning supplier is given by

γ(e∗(t), t) + ϕ(e∗(t)) = 1− t2

4
. (16)

This expression is decreasing in t, i.e., a higher supplier type has a lower overall cost.

Expected fines are given by

ϕ(e∗(t)) =
t2

4
. (17)

If expected fines are interpreted as renegotiation costs, expression (17) indicates that

renegotiation is more prevalent when a higher type wins the auction.

Expressions (15) and (16) imply that suppliers with a higher type t exert less effort

(lower performance level) and incur a lower overall cost (inclusive of fines). Thus, as in our

baseline model, the supplier’s cost and the auctioneer’s willingness to pay are positively

correlated. However, unlike in the baseline model, here cost and quality are determined

endogenously by the ex-post behavior of the winning bidder.
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5.3 Descending LoLAs

We have defined the LoLA as a sealed-bid auction. Alternatively, a LoLA can be imple-

mented with a descending clock auction format with irrevocable exit. In this implemen-

tation, the price starts at pH and is lowered continuously until either only one bidder is

left, or the clock reaches pL. In the first case the remaining bidder sells at the price where

the clock stopped. In the second case, each remaining bidder sells at price pL with equal

probability.

5.4 First-price LoLAs

In some procurement settings it may be desirable to use an auction format in which,

unlike in the LoLA, the winner pays its bid. Next, we introduce an auction format with

this property.

Definition 1 (FPLoLA). A first-price LoLA, or FPLoLA, with minimum bid bL and

reserve price pH ≥ bL is a (reverse) first-price sealed-bid auction in which bids below bL

and above pH are not allowed, and ties are broken uniformly.

In a first-price LoLA, the winning supplier always pays its bid. Individual rationality

is guaranteed because suppliers are free not to bid.

The next proposition shows that the allocation induced by any LoLA, i.e., who wins the

contract and how much each type expects to get paid, can be replicated by the symmetric

equilibrium of a suitably designed FPLoLA.

Proposition 4 (Implementation via an equivalent FPLoLA). The allocation induced by

the sincere equilibrium in a LoLA with any reserve price and floor price pL, can be imple-

mented by the symmetric equilibrium of an “equivalent FPLoLA” with the same reserve

price and a suitably chosen minimum bid bL.

Proof. See Lemma 6 in the appendix for a complete characterization of the equivalent

FPLoLA and its equilibrium. ■

Figure 3 compares the equilibrium bidding strategies in a LoLA and its equivalent

FPLoLA, in an environment with two bidders and costs drawn from the uniform distribu-

tion on [1, 5]. Consider a LoLA with floor price pL and reserve price pH . The red curve
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in Figure 3 represents the equilibrium bidding function in its equivalent FPLoLA (this

is the strategy βfL given in Lemma 6). In this equilibrium, types ci > pL bid as in a

(reverse) first-price auction with no minimum bid, and types ci ≤ pL bid the minimum

bid bL. Type pL is indifferent between bidding on the increasing portion of the red curve

and bidding the minimum bid bL. The minimum bid bL is carefully chosen to ensure that

the discontinuity in the bidding function arises precisely at type pL: this property must

hold for the FPLoLA to be equivalent to the LoLA.

Figure 3 also displays the equilibrium bidding strategy in the LoLA (blue line). All

types between pL and pH bid their cost, and all types below pL bid pL. Per the LoLA

rules, any bidder who wins with a bid of pL is paid at least pL, and sometimes more; in

expectation, such a bidder is paid an amount that equals exactly bL, the minimum bid

in the equivalent FPLoLA. The blue line is uniformly below the red line, meaning that

bidders in a LoLA bid more aggressively than in the equivalent FPLoLA.
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Equilibrium strategies in a LoLA and its equivalent FPLoLA

supplier’s cost

bids

5

1

51

bL

pL

pL

pH
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Figure 3: The blue line is the equilibrium bidding strategy in a LoLA with two bidders, costs drawn
from the uniform distribution on [1, 5], and pL = 3, pH = 4.4. The red line is the equilibrium bidding
strategy in the equivalent first-price LoLA; bidders with cost larger than pH choose not to bid.

Implementing a given allocation via a LoLA is less informationally demanding than

implementing it through an equivalent FPLoLA. Indeed, in a LoLA all suppliers have a

dominant strategy and so they do not need to concern themselves with the behavior of

others. Furthermore, the optimal floor price p∗L is independent of the number of bidders N

(see expression 12). In contrast, the corresponding minimum bid in the FPLoLA depends

on N (see expression 53).

5.5 Asymmetric bidders

In our setting, bidders may be asymmetric in two dimensions: in the parameter ξ and

in the cost distribution f . We were unable to obtain an analytic solution comparable
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to Theorem 1 for the asymmetric case.17 However, we used our software applications to

compute the optimal mechanism in asymmetric environments close to the symmetric one

studied in Section 2. The main insight from the numerical analysis is that a key feature of

optimal LoLAs is robust to the introduction of asymmetries across bidders. This feature

is that, when all bidders have relatively high cost, the auctioneer can afford to induce

price competition because the adverse selection problem is mild. However, when multiple

bidders have relatively low costs, the auctioneer prefers to suppress price competition in

order to avoid buying from the lowest cost (hence, lowest quality) bidder.

In our numerical analysis, supplier 1’s cost x is drawn from a distribution with density

f1(x; a) = a ·
(
x− 1

2

)
+ 1 on [0, 1]. Supplier 2’s cost y is drawn independently from the

uniform distribution on [0, 1]. The buyer’s willingness to pay for each supplier’s good is,

respectively:

v1(x) = v0 − 4 ·
(
1
2
x2 − x+ 1

3

)
and v2(y; ξ2) = v0 − ξ2 ·

(
1
2
y2 − y + 1

3

)
.

The parameter ξ2 modulates the severity of supplier 2’s adverse selection: if ξ2 equals

zero, there is no adverse selection. When f is uniform, the functional form of v2(y; ξ2)

guarantees that the ex-ante expected gains from trade with supplier 2 are independent of

ξ2.
18 Setting a = 0, v0 = 4

3
, and ξ2 = 4 yields the symmetric example of Section 2. Here

we set v0 = 2 to guarantee that, when we introduce asymmetries, both virtual valuations

remain positive.

When a is fixed at zero and ξ2 varies in the interval (2.5, 4), the optimal mechanism

is qualitatively illustrated in Figure 4 panel A. (Refer to Appendix C for details about

the computations.) When both suppliers’ costs are relatively high, supplier 1 wins more

often than in the symmetric case depicted in Figure 1. Conversely, when both suppliers’

costs are relatively low, supplier 2 wins more often. This property reflects the fact that

the optimal mechanism rewards suppliers with a relatively high virtual valuation. Because

ξ2 < 4, supplier 2’s virtual valuation (refer to expression 4) exceeds its opponent’s if both

costs are small; conversely, if both costs are high, supplier 1’s virtual valuation is higher.19

Note, also, that when both suppliers’ costs are low, supplier 2 wins for sure. To understand

17The proof of Theorem 1 relies on identifying the analytic expression of the dual solution, i.e., the
shadow prices of the weighted welfare problem. In the asymmetric case the dual solution is not unique,
and this multiplicity makes it more difficult to identify the analytic expression of any dual solution.

18For the same reason, the gains from trade with supplier 1 are the same as with supplier 2.
19This can be verified by plugging the expressions for v1 and v2 in (4) and setting x close to y.
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this property, observe that in the symmetric case the auctioneer was indifferent between

the two suppliers, and so was willing to randomize between the two; here, instead, supplier

2 is strictly preferable.

When ξ2 is fixed at 4 and a varies in the interval (0, .5), the optimal mechanism

is qualitatively illustrated in Figure 4 panel B. Supplier 1 wins more often than in the

symmetric case depicted in Figure 1. This property results from a standard property

that does not depend on quality concerns: for any supplier, lower-cost types command

more information rents. When a > 0 low-cost types are less likely for supplier 1 than for

supplier 2, and thus it is better for the auctioneer to buy from supplier 1. This causes

the optimal mechanism to favor bidder 1. Note, also, that when both suppliers have a

relatively low cost, supplier 1 wins for sure. To understand this feature, observe that in

the symmetric case the auctioneer was indifferent between the two suppliers, and so was

willing to randomize between the two. Now, supplier 1 is strictly more attractive than

supplier 2.

Optimal auctions in asymmetric settings
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Figure 4: In panel A, the ex-ante expected gains from trading with either supplier are the same, but
quality concerns are less severe for supplier 2. In panel B, supplier 1’s cost distribution is higher than
(i.e., stochastically dominates) its opponent’s.
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6 Illustrative application: optimal procurement mech-

anisms for Italian public sector

This section illustrates the benefits of running the optimal auction in an adverse selection

environment. Using information that was generously provided by Francesco Decarolis,20

we perform a counterfactual experiment on Italian government procurement auctions. By

making some stark assumptions about how quality enters the government’s objective func-

tion (expression 18), we are able to compute the gain (buyer surplus) that the government

could have made, had it used the optimal mechanism – which, conveniently, happens to

be a LoLA – relative to a first-price auction, which is the format the government actually

used.21

The goal of this section is not to give policy recommendations, but merely to sketch

out how real-world data can be used to find the optimal mechanism. Therefore, we forego

the battery of robustness checks that would be essential if our goal was to give policy

recommendations.

6.1 The available data

The available data is depicted in Figure 5. Panel A shows the estimated distribution of

bidder costs f̂ , which was structurally estimated by Decarolis (2018) and corresponds to

our f(c).22 Panels B and C show the empirical distributions of two measures of the auction

winner’s quality: the delivery delay ratio D, and the cost overrun ratio O.23 The figure

20This information relates to Decarolis’ (2014, 2018) structural analysis of Italian procurement firms.
21To compute optimal mechanisms, this section leverages two software applications that we have created

and made publicly available. Taking as input the bidders’ cost distribution F and the auctioneer’s
valuation function v(c, ξ), these applications yield the optimal procurement mechanism (5), even when
Assumption 1 is violated and, so, the optimal mechanism may not be a LoLA. Applications downloadable
from https://github.com/forket86/Software-1-Optimal-LoLA and https://github.com/forket86/Software-
2-Optimal-Mechanism.

22In Decarolis’ (2018) structural model, supplier i’s cost in a given auction is given by:

ci = y + zi,

where the zi’s are idiosyncratic and privately-known cost components, and y is an auction-specific and
commonly-known scalar. Decarolis (2018) estimates that z1, ..., zN are i.i.d. draws from a random variable
Z whose density is depicted in Figure 5, panel A. In what follows we assume, without loss of generality,
that y = 0, which allows us to interpret zi’s as ci’s.

23Delay ratios D are measured as the difference between contractually-stipulated and actual delivery
dates, divided by the former. Cost overrun ratios O are measured as the difference between the money
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indicates that, in most cases, the government suffers a delay, a cost overrrun, or both.24

Distributions of cost and quality measures
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Figure 5: The left-hand panel depicts the estimated p.d.f. f̂Z of the idiosyncratic cost component Z
(unit is 105 euros) from Decarolis’ (2018) assumed cost structure ci = y+ zi, where the zi’s are iid draws
from Z, and y is an auction-specific scalar. Without loss of generality we normalize y = 0, which allows
us to replace zi with ci in the left-hand panel. The middle and right-hand panels display the empirical
marginal distributions gD and gO of, respectively: the delay ratio D, which is the difference between the
actual and the contractual time, as a percentage of the contractual time; and of the overrun ratio O which
is the difference between the final payment and the winning bid as a percentage of the reserve price. See
Decarolis (2014, p. 117). Kernel (Epanechnikov) smoothed distributions, the bandwidth used are 11000,
18.15 and 3.0071 respectively. Data generously provided by Francesco Decarolis.

6.2 Calibrating the buyer’s payoff function v(c, ξ)

Based on these three distributions, we seek to obtain a calibrated counterpart for our

theoretical construct v(c, ξ). To cut down on expositional complexity, we assume the

starkest possible functional form:

v(c, ξ) = const−KE [D(c, ξ) +O(c, ξ)] , (18)

eventually paid by the government and the winning bid, divided by the auction’s reserve price.
24Note, for future reference, that panels B and C display the quality supplied by the winner in a

first-price auction, which is not representative of the quality that would have been supplied by a random
bidder.
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where D(c, ξ) and O(c, ξ) are unobserved random variables that represent the delays and

cost overrruns, respectively, that are stochastically delivered by a supplier with cost c,

conditional on the parameter ξ. The rationale for the minus sign is that delays and cost

overruns decrease the buyer’s value. K is a positive scaling parameter whose value will be

calibrated later.25

The parameter ξ in expression (18) moderates the correlation between a supplier’s cost

c, and the qualities D and O stochastically provided by that supplier. This role appears

to be conceptually different from the interpretation given to ξ in our theoretical model:

in the theory, ξ is conceptualized as a buyer type; in(18), ξ is conceptualized as a feature

of the supply-delivery technology. This conceptual distinction does not make a difference

here because, operationally, what matters is that ξ determines the slope of the buyer’s

valuation, as it does in expression (19) below.

The distributions of the random variablesD(c, ξ) and O(c, ξ) are as yet unspecified. We

calibrate them semi-parametrically by requiring that, given that c ∼ f̂ , their distributions

for any given ξ coincide with the empirical marginal distributions gD and gO depicted

in Figure 5.26 Definition 3 in Appendix D provides formulae for constructing calibrated

D̂(c, ξ) and Ô(c, ξ) with the desired marginals, for any value of the parameter ξ. Using

these formulae allows us not to take a stand on the value of ξ. Plugging these formulae into

expression (18) yields the following expression for the calibrated buyer payoff function:

v̂(c, ξ) = const−KE
[
D̂(c, ξ) + Ô(c, ξ)

]
= const(ξ)− ξK [δ(c) + ω(c)] , (19)

where const(ξ) is independent of c and, from Definition 3, we have:

δ (c) = G−1
D

([
1− F̂ (c)

]N)
,

ω (c) = G−1
O

([
1− F̂ (c)

]N)
,

(refer to Appendix D.2 for the computations). Expression (19) is the calibrated buyer’s

payoff. This expression is a fully specified function of (c, ξ) up to a constant. Indeed,

25There is no difficulty in making expression (18) more complex. For example, one could pre-multiply
D(c, ξ) and O(c, ξ) by positive constants, and the analysis would be essentially unchanged.

26Formally this means that, denoting the winning bidder’s cost by C(1) = min {C1, ..., CN}, the random
variable D(C(1), ξ) has density gD, and O(C(1), ξ) has density gO.
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the three quantities F̂ , GD, and GO are given in Figure 5; and the parameters N,K are

assigned numerical values as described in Appendix D.2.

The parameter ξ will be treated as a free parameter. This parameter determines the

sensitivity of the buyer’s payoff to the quality concerns. If ξ = 0 the function v̂(c, ξ)

does not depend on c and, therefore, the buyer has no quality concerns. If ξ > 0, the

function v̂(c, ξ) is increasing in c (this is because δ (c) and ω (c) are decreasing functions

of c). Intuitively, the parameter ξ modulates the buyer’s quality concerns because, in

the construction of D̂(c, ξ) and Ô(c, ξ), this parameter governs the correlation between

supplier cost and quality.

The function v̂ satisfies the two theoretical assumptions imposed on page 11. Indeed,

it can be checked from expression (19) that v̂cξ ≥ 0. Furthermore, we can (and will) make

const(ξ) in expression (19) large enough that v̂(cL, ξ) ≥ cL for all ξ ∈ [0, 1].

6.3 Buyer-optimal and socially optimal mechanisms are LoLAs

We compute the calibrated virtual valuation function:

ŵ(c; ξ, β) ≡ v̂(c; ξ)− c− β
F̂ (c)

f̂(c)
, (20)

by substituting v̂ from (19) and F̂ from Figure 5 into the expression for the virtual valu-

ation (4). We set const(ξ) large enough that the virtual valuation (20) is positive for all

values of c and β, which implies that it is optimal not to set any reserve price pH in the

LoLA.27

Each of the left-hand panels in Figure 6 displays ŵ as a function of c, for β = 0 (gains

from trade, dashed red line) and β = 1 (buyer’s virtual valuation, solid blue line). These

functions are shown for ξ = 0, 0.33, 0.67, and 1, respectively, in panels A-D. In all four

left-hand panels, the buyer’s virtual valuation and the gains from trade happen to be

quasi-concave functions of c, so Assumption 1 is satisfied. Therefore, by Theorem 1 the

LoLA is the buyer-optimal and the socially optimal auction for all displayed values of ξ.

The right-hand panels of Figure 6 are calibrated counterparts to Figure 2. Each right-

27const(ξ) can be made arbitrarily large by setting const large enough in expression (18): refer to
Appendix D.2 for information about the calibration.
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hand panel displays the expected buyer (solid blue line) and social (dashed red line) surplus

in a LoLA with floor price pL. The optimal floor prices are determined by equation (12)

after setting β equal to one or zero: accordingly, they maximize the expected (buyer or

social) surplus, as shown in Figure 6. Within each right-hand panel, the socially optimal

floor price always exceeds the buyer-optimal one. This is a consequence of Proposition 1

part 3, because the estimated cost distribution F̂ happens to be log-concave (see Figure

8).

As we move down from panel A to panel D, the parameter ξ (correlation between cost

and quality) increases. Therefore, the buyer’s quality concerns also increase, causing more-

costly suppliers to become more socially valuable (as we move down the left-hand panels,

the gains-from-trade dashed red line becomes increasing). Consistent with Proposition 1

part 2, the buyer-optimal and socially optimal floor prices increase with ξ: see the righ-

hand panels. For low values of ξ, the buyer-optimal and socially optimal auctions coincide

with a first (or equivalently, second) price auction because the optimal floor prices coincide

with cL. As ξ increases, the optimal floor prices increase until, for sufficiently high values

of ξ, the supplier is randomly selected in the socially optimal auction.
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Optimal mechanisms with varying degrees of quality concerns
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Figure 6: Virtual valuation functions w (c) and gains from trade v(c) − c for different values of ξ (left-
hand column); expected buyer and social surplus in a LoLA with floor price pL and no reserve price
for different values of ξ (right-hand column). Recall that in our calibration it is optimal not to have a
reserve price. Units of c are 105. As quality concerns increase (i.e., ξ increases), more-costly suppliers
become more socially valuable (left panel, dashed red line). With minimal quality concerns, the optimal
LoLAs reduce to standard auctions, i.e., first- or second-price auctions (ξ = 0, top right panel). With
maximal quality concerns, the socially optimal LoLA reduces to the random allocation mechanism (ξ = 1,
bottom-right panel).

6.4 Performance of the buyer-optimal mechanism vs. first-price

auction

Figure 7 shows the performance gain of the buyer-optimal mechanism, which in our case

is a LoLA with optimal floor price p∗L and no reserve price, over a first-price (or, which is

the same in our case, a second-price) auction, as ξ varies.28 We analyze three performance

28The optimal floor p∗L (not shown in the figure) changes as ξ varies.
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metrics: expected buyer surplus (top panel), expected supplier profit (middle panel), and

expected social surplus (bottom panel). In all three metrics, the buyer-optimal LoLA

outperforms a conventional auction: for example, when ξ = 1, buyer surplus is 15% higher

in the optimal LoLA than in a first-price auction. The performance gain is increasing in

the level of ξ, as one would expect. Even at relatively lower levels of ξ ≈ 0.5, that is, when

the quality concerns are relatively mild, a LoLA affords gains in the 2.5% range, which

are nontrivial from a policy perspective.

Performance of buyer-optimal mechanisms relative to first-price auction
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Figure 7: Performance improvement of optimal LoLA over first-price (or second-price) auction.

In Section 5.4 we showed that the optimal LoLA can also be implemented via a first-

price auction with an appropriately chosen minimum bid bL. Within the parametric setting

that gives rise to Figure 6, we computed the minimum bids bL corresponding to the buyer-

optimal floor prices pL (these pL’s are marked by the red dots on the blue curves in the

figure). We know from the theory that bL ≥ pL. Using expression 53 we find that bL is up

to 24% higher than pL when ξ = 0; the two thresholds both converge to cH (and therefore
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to each other) as ξ increases toward 1.29

7 Conclusions

Adverse selection is a major concern in procurement. In this paper we have presented a

mechanism called LoLA which, under some regularity conditions, is the best incentive-

compatible mechanism for maximizing either the seller’s surplus or the social surplus (or

any combination thereof). The mechanism features a floor (or minimum) price and a

reserve (or maximum) price. The sincere-bidding equilibrium of the LoLA is in domi-

nant strategies, implements the surplus-maximizing allocation, and is unique under mild

regularity conditions.

To illustrate the gains from the optimal mechanism, we performed a counterfactual

experiment on Italian government procurement auctions. We computed the gain that the

government could have made, had it used the optimal mechanism (which happens to be a

LoLA), relative to a first-price auction, which is the format the government actually used.

We find that, in a reasonably calibrated model, these savings can be nontrivial.

Our analysis has sidestepped the issues of repeated interaction and collusion. In the

presence of collusion, it is possible that the presence of a floor price might help, as has

been suggested in the literature. However, finding the optimal mechanism in the presence

of collusion is beyond the scope of this paper.

We hope that our analysis can lead procurement agencies to consider experimenting

with the LoLA.

29The code used to compute bL is available at https://www.alessandrotenzinvilla.com/research.html.
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A Proofs for Section 4

A.1 Proof of Theorem 1

For any pair pL and pH such that cL ≤ pL ≤ pH ≤ cH , consider the LoLA with threshold

prices pL and pH . Sincere bidding in the LoLA induces the following outcome:

qLi (ci, c−i; pL, pH) ≡



1 if pL ≤ ci < c
(1)
−i

1 if ci ≤ pL < c
(1)
−i

1
κ+1

if max
{
c
(κ)
−i , ci

}
≤ pL < c

(κ+1)
−i

0 else

(21)

and

mL
i (ci, c−i; pL, pH) ≡



c
(1)
−i if pL ≤ ci < c

(1)
−i

c
(1)
−i if ci ≤ pL < c

(1)
−i

1
κ+1

· pL if max
{
c
(κ)
−i , ci

}
≤ pL < c

(κ+1)
−i

0 else,

(22)

where c
(κ)
−i denotes the κ-th lowest cost among all supplier i’s opponents. For expositional

simplicity, events where two or more bidders have the same cost are ignored in (21, 22)

because they happen with probability zero.

The functions (qL,mL) may also be interpreted as a direct revelation mechanism. We

now show that, in this direct revelation mechanism, truthful reporting is a (weakly) dom-

inant strategy.

Lemma 1. (qL, mL) satisfies, ∀i = 1, ..., N,

∀ci, c′i, c−i, mi(ci, c−i)− ci · qi(ci, c−i) ≥ mi(c
′
i, c−i)− ci · qi(c′i, c−i) (23)

and

∀ci, c−i, mi(ci, c−i)− ci · qi(ci, c−i) ≥ 0. (24)
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Proof. It is well known in mechanism design that conditions (23-24) hold if and only if

the following conditions hold jointly: ∀c−i ∈ [cL, cH ]
N−1

mL
i (cH , c−i; pL, pH) ≥ cH · qLi (cH , c−i; pL, pH) (25)

qLi (·, c−i; pL, pH) is nonincreasing, (26)

and

∀ ci ∈ [cL, cH ] mL
i (ci, c−i; pL, pH) = ci · qLi (ci, c−i; pL, pH) +

∫ cH

ci

qLi (t, c−i; pL, pH) dt.

(27)

Therefore, it suffices to show that (25-27) hold. To this end, observe that the inequalities

in (25) and the monotonicity in (26) are immediate. The envelope condition in (27) holds

because both mL and qL are constant in ci on [cL, pL) and on (pH , cH ], and

pL·
[
lim
x↑pL

qLi (x, c−i; pL, pH)− lim
x↓pL

qLi (x, c−i; pL, pH)

]
= lim

x↑pL
mL

i (x, c−i; pL, pH)− lim
x↓pL

mL
i (x, c−i; pL, pH)

■

Our strategy of proof will involve restricting attention to candidate mechanisms that

are symmetric, and this will be without loss of generality. Next, we introduce a formal

definition of symmetric mechanism.

Definition 2. A mechanism (qi,mi)i=1,...,N is symmetric if, for all i,

qi(cπ(1), cπ(2), ..., cπ(N)) = qπ(i)(c1, c2, ..., cN),

and

mi(cπ(1), cπ(2), ..., cπ(N)) = mπ(i)(c1, c2, ..., cN),

for every permutation π of {1, 2, ..., N}. A symmetric mechanism is given by two functions

q ≡ q1 : [cL, cH ]
N → [0, 1] and m ≡ m1 : [cL, cH ]

N → [0, 1]

which are invariant to permutations of the last N − 1 variables, i.e., letting N be the set
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of numbers {1, ..., N}, ∀i ∈ N , ∀ permutation π of N we have:

qi(c1, c2, ..., cn) = q(ci, c2, ..., ci−1, c1, ci+1, ..., cN),

and

mi(c1, c2, ..., cn) = m(ci, c2, ..., ci−1, c1, ci+1, ..., cN).

If we restrict attention to symmetric mechanisms, the original weighted welfare max-

imization problem (6- 10) can be written more simply. We write down the simplified

problem next and then, in Lemma 2, we show that the two maximization problems are

equivalent. Define:

Q(c1) ≡
∫
[cL,cH ]N−1

q(c1, c−1)·
∏
j>1

dF (cj)

M(c1) ≡
∫
[cL,cH ]N−1

m(c1, c−1)·
∏
j>1

dF (cj).

(28)

First reformulation of the weighted welfare maximization problem

max
Q,M

N

∫
[cL,cH ]

[ [v(ci, ξ)− (1− β) · ci] ·Q(ci)− β ·M(ci)] f(ci) dci (29)

subject to, for all ci, c
′
i ∈ [cL, cH ]:

M(ci)− ci ·Q(ci) ≥ M(c′i)− ci ·Q(c′i), (30)

M(ci)− ci ·Q(ci) ≥ 0, (31)

Q(ci) ≥ 0, (32)

and

N

∫ ci

cL

Q(y) f(y) dy ≤ 1− [1− F (ci)]
N . (33)

Lemma 2. Restrict attention to symmetric mechanism. The value of the weighted welfare

maximization problem (6- 10) is the same as the value of problem (29- 33).

Proof. Because in solving problem (6- 10) we are restricting attention to mechanisms

(qi,mi)i=1,...,N that are symmetric, the objective function (6) can be re-written as (29).
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Similarly, the constraints (9) and (10) can be re-written as: (30) and (31). Furthermore,

Border (1991) proves that, if the function q is symmetric in the sense of Definition 2, the

demand constraints (7) and nonnegativity constraints (8) hold if and only if (32) and (33)

are satisfied.

■

Problem (29- 33) can be further simplified, as follows.

Second reformulation of the weighted welfare maximization problem

max
Q

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc (34)

where w(c; ξ, β) is defined in (4), subject to:

Q is nonincreasing, (35)

and, for all c ∈ [cL, cH ]:

Q(c) ≥ 0, (36)

and

N

∫ c

cL

Q(y) f(y) dy ≤ 1− [1− F (c)]N . (37)

Lemma 3. The weighted welfare maximization problem (29- 33) can be reformulated as

(34- 37).

Proof. The incentive constraints (30) and (31) can be replaced without loss of generality

by (35) and the envelope condition:

∀ c ∈ [cL, cH ] M(c) = c ·Q(c) +

∫ cH

c

Q(t)dt. (38)

(This result is standard: see, e.g., Proposition 5.2 at p. 66 of Krishna 2010). Next, we

use (38) to eliminate M from the problem. Substituting it into (29) and simplifying yields

(34). Finally, (36) and (37) are identical to (32) and (33). ■

Next is the final reformulation of the problem.
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Final (relaxed) formulation of the weighted welfare maximization prob-

lem

max
Q

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc (39)

where w(c; ξ, β) is defined in (4), subject to:

N

∫ cH

cL

w(c; ξ, β) ·Q(c) · f(c) dc ≤ N

∫ cH

cL

w(c; ξ, β) ·QL(c, p∗L, p
∗
H) · f(c) dc, (40)

where QL(c, p∗L, p
∗
H) is given by expression (28) with q being replaced by

qLi (ci, c−i; p
∗
L, p

∗
H) from expression (21).

Problem (39-40) below is actually a relaxation of (34- 37). Aggregating constraints

(35-37) into the single inequality (40) is the most innovative part of the proof. This

aggregation is proved in the next lemma.

Lemma 4. Any allocation function Q that satisfies (35-37) also satisfies (40).

Proof. The proof consists in multiplying both sides of each inequality (35-37) by a non-

negative multiplier (which does not change the constraint), and then integrating over c on

both sides of each constraint, and finally summing the three resulting inequalities. The

resulting inequality identifies a superset of the original feasible set, and happens to equal

(40).

The multipliers equal zero except:

∀c ∈ (p∗H , cH ] : η(c) ≡ −w(c; ξ, β)·f(c)

∀c ∈ (p∗L, p
∗
H) : δ(c) ≡ −wc(c; ξ, β)

∀c ∈ [cL, p
∗
L) : µ(c) ≡ F (c)

F (p∗L)

∫ p∗L

cL

w(t; ξ, β) dF (t)−
∫ c

cL

w(t; ξ, β) dF (t)

(41)

To save on notation, in the rest of this proof we omit the dependence of w on (ξ, β).

Let us first show that the multipliers are nonnegative. We have η(c) ≥ 0 ∀c ∈ (p∗H , cH ],

because w is negative on the interval (p∗H , cH ]. We have δ(c) ≥ 0 ∀c ∈ (p∗L, p
∗
H), because
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w is decreasing on the interval [p∗L, p
∗
H ]. Finally, consider µ on [cL, p

∗
L). First note that

µ(cL) = µ(p∗L) = 0 (42)

If cL < p∗L, then the definition of p∗L in (12) implies w(cL) < w(p∗L). Since w is quasiconcave,

there exists a point p0 such that w(p0) = w(p∗L) and

∀c ∈ [cL, p0) w(p∗L)− w(c) ≥ 0, and

∀c ∈ (p0, p
∗
L] w(p∗L)− w(c) ≤ 0,

Thus the derivative

µ′(c) = f(c) [w(p∗L)− w(c)]

is positive for c < p0, and negative for c > p0, that is µ is single-peaked on [cL, p
∗
L].

This, together with (42), implies that µ is nonnegative on [cL, p
∗
L]. Thus nonnegativity is

established.

Now, we multiply both sides of: (35) by µ(c), (36) by η(c), (37) by δ(c). We then

integrate over c. Finally, we sum the three resulting inequalities. We arrive at:

∫ p∗L

cL

µ(y) dQ(y) +

∫ p∗H

p∗L

δ(t)

∫ t

cL

Q(y)f(y) dy dt−
∫ cH

p∗H

η(y)Q(y) dy ≤
∫ p∗H

p∗L

δ(c)B(c) dc.

(43)

where

B(c) ≡ 1

N
·
(
1− [1− F (c)]N

)
c ∈ [cL, cH ]. (44)

To see that (43) is equivalent to (40), let’s focus first on the LHS of (43). The first

integral can be rewritten as:

=0︷ ︸︸ ︷
µ(p∗L) ·Q(p∗L)−

=0︷ ︸︸ ︷
µ(cL) ·Q(cL)−

∫ p∗L

cL

Q(y)µ′(y) dy

=−
∫ p∗L

cL

µ′(y)Q(y) dy. (45)
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The second integral on the LHS of (43) can be rewritten as:∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt

)
Q(y)f(y)dy +

∫ p∗H

p∗L

(∫ p∗H

y

δ(t)dt

)
Q(y)f(y)dy

=

∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt

)
Q(y)f(y)dy +

∫ p∗H

p∗L

w(y)Q(y)f(y)dy, (46)

where equality holds because:∫ p∗H

y

δ(t)dt = w(p∗H)−
∫ p∗H

y

w′(c)dc = w(y).

Adding (45) and (46) yields:∫ p∗L

cL

(∫ p∗H

p∗L

δ(t)dt− µ′(y)

f(y)

)
Q(y) f(y) dy

=

∫ p∗L

cL

w(y)Q(y) f(y) dy, (47)

where equality holds because:

∫ p∗H

p∗L

δ(t) dt− µ′(y)

f(y)
=

=w(p∗L)︷ ︸︸ ︷
w(p∗H)−

∫ p∗H

p∗L

w′(t)dt−µ′(y)

f(y)

= w(p∗L)−
(

1

F (p∗L)
·
∫ p∗L

cL

w(t)f(t)dt− w(y)

)

=

=0︷ ︸︸ ︷
w(p∗L)−

1

F (p∗L)
·
∫ p∗L

cL

w(t)f(t)dt +w(y)

= w(y)

The third integral on the LHS of (43) can be rewritten as:

−
∫ cH

p∗H

η(y)Q(y)dy =

∫ cH

p∗H

w(y)f(y)Q(y)dy. (48)
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Combining (47) and (48) we can rewrite the LHS of (43) as∫ cH

cL

w(y)Q(y)f(y)dy.

Let’s now focus on the RHS of (43). Plugging in the expression for δ and simplifying

yields:

−
∫ p∗H

p∗L

w′(c)B(c) dc

=w(p∗L)B(p∗L) +

∫ p∗H

p∗L

w(c)B′(c) dc

=

∫ p∗H

p∗L

w(c) (1− F (c))N−1 f(c) dc+

∫ p∗L

cL

1− [1− F (pL)]
N

N · F (pL)
w(c) f(c) dc, (49)

where the second equality follows from the definition of B in (44). Now observe that:

QL(c1; p
∗
L, p

∗
H) ≡

∫
[cL,cH ]N−1

q(c1, c−1; p
∗
L, p

∗
H)·
∏
j>1

dF (cj)

=



0, c1 ∈ (p∗H , cH ] ;

[1− F (c1)]
N−1 , c1 ∈ (p∗L, p

∗
H ] ;

1−[1−F (p∗L)]
N

N ·F (p∗L)
, c1 ∈ [cL, p

∗
L] .

(50)

Hence (49) boils down to:

∫ p∗H

p∗L

w(c)QL(c, p∗L, p
∗
H) f(c) dc+

∫ p∗L

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc

=

∫ p∗H

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc

=

∫ cH

cL

w(c)QL(c, p∗L, p
∗
H) f(c) dc.
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This completes the proof.

■

We are now ready to prove Theorem 1.

Proof of Theorem 1

Proof. Lemma 1 shows that the direct mechanism (qL,mL) satisfies both IC and IR ex

post. Therefore, sincere bidding in the LoLA is a (weakly) dominant strategy equilibrium.

Moreover, (qL,mL) is a feasible mechanism, i.e., it satisfies constraints ( 7 - 10). Indeed,

unit demand (7) and nonnegativity (8) can be checked directly from the definition (21),

and the fact that (qL,mL) satisfy the ex-post incentive constraints, as proved in Lemma

1, immediately implies that it also satisfies their interim counterparts (9) and (10).

It remains to show that the mechanism (qL,mL) defined in (21) and (22) solves the

weighted welfare problem. We proceed in two steps.

Maskin and Riley (1986, footnote 11) show that, in our setting, given any optimal

mechanism for the weighted welfare problem, there is a symmetric mechanism that attains

the same (maximal) value. Therefore, we can restrict the search for an optimal mechanism

to the set of symmetric mechanisms (of which (qL,mL) is one) without loss of generality.

After restricting to symmetric mechanisms, Lemmas 2 -4 yield a relaxed problem with a

set of feasible mechanisms (40) that contains the original feasible set. If a LoLA solves this

relaxed problem, then a fortiori the LoLA solves the original problem. The LoLA defined

by (50) solves this relaxed problem because QL(c, p∗L, p
∗
H) satisfies (40) with equality.

■
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A.2 Proof of Proposition 2

Proof. The weighted welfare generated by the optimal LoLA is:

N ·
∫ p∗H

cL

w(ci) ·QL
∗ (ci) · dF (ci)

= N ·

Q̄︷ ︸︸ ︷
1− [1− F (p∗L)]

N

N · F (p∗L)
·
∫ p∗L

cL

w(ci) · dF (ci) +N ·

QL
∗(ci) above pL︷ ︸︸ ︷∫ p∗H

p∗L

w(ci) · [1− F (ci)]
N−1 · dF (ci)

=
1− [1− F (p∗L)]

N

F (p∗L)
·
∫ p∗L

cL

w(ci) · dF (ci) +N ·
∫ cH

p∗L

max {w(ci), 0} · [1− F (ci)]
N−1 · dF (ci)

=
(
1− [1− F (p∗L)]

N
)
·

w(p∗L)︷ ︸︸ ︷∫ p∗L

cL

w(ci) ·
f(ci)

F (p∗L)
dci+

∫ cH

p∗L

max {w(ci), 0} dG(ci)

=

1−

≡P (N)︷ ︸︸ ︷
[1− F (p∗L)]

N

 · w(p∗L) +

≡P (N)︷ ︸︸ ︷
[1− F (p∗L)]

N ·

≡E(N)︷ ︸︸ ︷
E
[
max

{
w(c(1)), 0

}
| p∗L < c(1)

]

= w(p∗L)− P (N) ·
(
w(p∗L)− E(N)

)
, (51)

where G(ci) ≡ 1 − (1 − F (ci))
N is the c.d.f. of the lowest cost, and g(ci) = G′(ci) =

N (1− F (ci))
N−1 f(ci) is its density.

The first equality follows from replacing QL
∗ with (56). The second equality follows

from canceling N in the first term, and extending the second integral to cH . The third

equality follows from pulling F (p∗L) inside the integral, and using the definition of G. The

fourth equality makes use of the fact that

w(p∗L) =
1

F (p∗L)

∫ p∗

cL

w(c) dF (c) dc, (52)

which follows from integrating by parts the integral in(12).

Now note that, by definition (12), if p∗L is greater than cL it must lie in the region where
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the function w is decreasing. This region extends all the way to cH by Assumption 1.

Because max {w(·), 0} is positive at p∗L (see (52)) and nonincreasing on [pL, cH ], stochastic

dominance implies that the conditional expectation E(N) in (51) is strictly increasing in

N . This implies that the term in parenthesis in (51) is positive. Because P (N) in (51) is

decreasing in N , expression (51) is increasing in N . ■
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B Proofs for Section 5

B.1 Proofs for Section 5.1

In this extension, each supplier i = 1, ..., N draws its type θi = (ci, xi) independently from

a distribution with density ϕ and support Θ1 ≡ [cL, cH ]× [xL, xH ]. Let Θ ≡ ΘN
1 .

A direct mechanism M consists of 2N functions

M ≡ {qi(c, x),mi(c, x) | (c, x) ∈ Θ}Ni=1

The restriction to symmetric mechanisms is wlog in the case as well.

Define supplier i’s profit function as

Π(ci, xi) ≡ sup {Mi(c
′
i, x

′
i)− ci ·Qi(c

′
i, x

′
i) | (c′i, x′

i) ∈ Θ1}

Lemma 5. If a mechanism is incentive compatible, then its reduced form Q must be

independent of xi, except possibly at for a zero measure set, i.e., for all i, all ci, xi and x′
i

Qi(ci, xi) = Qi(ci, x
′
i)

Proof. Standard mechanism design arguments imply that Π is convex and absolutely con-

tinuous.

The envelope theorem implies

∂ Π(ci, xi)

∂ xi

= 0 a.e.

and
∂ Π(ci, xi)

∂ ci
= −Q(ci, xi) a.e.

For any types (ci, xi) and (c′i, x
′
i), the profit difference Π(c′i, x

′
i) − Π(ci, xi) is equal to

the line integral of the gradient of Π along any path. Therefore we have

∫ c′i

ci

=−Q(t,xi)︷ ︸︸ ︷
∂ Π(t, xi)

∂ ci
dt+

∫ x′
i

xi

=0︷ ︸︸ ︷
∂ Π(c′i, t)

∂ xi

dt =

∫ x′
i

xi

=0︷ ︸︸ ︷
∂ Π(ci, t)

∂ xi

dt+

∫ c′i

ci

=−Q(t,x′
i)︷ ︸︸ ︷

∂ Π(t, x′
i)

∂ ci
dt

48



If (ci, xi) < (c′i, x
′
i), the path in the LHS is “first east and then north”; and the path in

the RHS is “first north and then east”.

Thus we have ∫ c′i

ci

Q(t, xi)dt =

∫ c′i

ci

Q(t, x′
i)dt

Because the last equality must hold for any ci and c′i, Q must be independent of xi, except

possibly for a zero measure set. ■

Lemma 5 implies that Π is also independent of xi. and thus M must satisfy the

envelope condition

M(ci) = Π(cL) +

∫ ci

cL

Qi(t) dt,

and thus must be independent of xi.

49



B.2 Proof for Section 5.4

Lemma 6. Fix a LoLA with floor price pL and reserve price pH , and denote by Q̄ the

probability of winning for any type with cost below pL. The FPLoLA with the same reserve

price and minimum bid given by

bL =
Q̄− [1− F (pL)]

N−1

Q̄
· pL +

[1− F (pL)]
N−1

Q̄
· β(pL; pH) (53)

is equivalent in the sense that it generates the same interim expected payments and profits

for each supplier, and the same buyer’s expected surplus.

The following strategy is a symmetric equilibrium in the equivalent first-price LoLA:

βfL(ci; pL, pH) ≡


bL if ci ≤ pL

β(ci; pH) if pL < ci ≤ pH

no bid if ci > pH ,

(54)

where

β(ci; pH) = E
[
min

{
c
(1)
−i , pH

}
| ci < c

(1)
−i

]
is the equilibrium bidding strategy in the standard (reverse) first-price auction with reserve

price pH and no minimum bid, and c
(1)
−i denotes the lowest cost among i’s opponents.

Proof. The proof proceeds as follows. First, we show that when bidder i computes its best

response in the FPLoLA, there is no loss of generality in ignoring the interval of “unused

bids” (bL, β(pL)). Since all the remaining bids are used by some type, we can restate the

best response problem as reporting a type in the direct revelation mechanism induced by

βfL(ci; pL, pH).

Next, we compute the interim probability of winning and expected payment for each

type ci in the direct revelation mechanism induced by βfL(ci; pL, pH), and show that these

functions coincide with their counterparts in the sincere equilibrium in the LoLA. This

implies the equivalence of the two auction formats in terms of buyer expected surplus,

interim expected payments, and expected profits.

Finally, because sincere bidding is an equilibrium in the LoLA, truthful reporting

must also be an equilibrium in the direct revelation mechanism induced in the FPLoLA
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by βfL(ci; pL, pH). Equivalently, β
fL(ci; pL, pH) is an equilibrium in the FPLoLA.

No loss of generality in ignoring “unused bids”

Suppose that all bidders in the FPLoLA except i follow the strategy βfL given in (54).

Then bidder i’s expected payoff function is:

Πi(b, ci) =



0 if no bid

(b− ci) [1− F (β−1(b))]
N−1

if β(bL; pH) ≤ b ≤ pH

(b− ci) [1− F (bL)]
N−1 if bL < b < β(bL; pH)

(bL − ci) Q̄ if b = bL

For any ci ∈ [cL, cH ], the payoff function Πi(·, ci) is linear and strictly increasing on the

middle interval (bL, β(bL; pH)]. Therefore all bids in this interval cannot be optimal for

any type. Once all bids in (bL, β(bL; pH)] are removed from consideration, all remaining

bids are in the range of βfL. Since all the remaining bids are used by some type, we can

interpret choosing the best response in the FPLoLA as choosing a type report in the direct

revelation mechanism induced by βfL.

The direct revelation mechanism induced by the LoLA

In the LoLA, for any type profile (ci, c−i) supplier i sells with probability

qLi (ci, c−i) =


1 if ci < min {c(1)−i , pH} and pL < c

(1)
−i

1
k+1

if ci ≤ pL and c
(k)
−i ≤ pL < c

(k+1)
−i

0 else

(55)

The resulting interim probability of selling is
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QL(ci) ≡
∫
[cL,cH ]N−1

qLi (ci, c−i)
N∏
j ̸=i

f(cj) dcj

=


Q̄ if ci ∈ [cL, pL]

[1− F (ci)]
N−1 if ci ∈ (pL, pH ]

0 if ci ∈ (pH , cH ]

(56)

where

Q̄ =
N−1∑
j=0

Pr[j opponents have cost below pL]︷ ︸︸ ︷(
N − 1

j

)
· F (pL)

j · [1− F (pL)]
N−1−j ·

uniform tie-breaking︷ ︸︸ ︷
1

j + 1

=
N−1∑
j=0

(N − 1)!

j! (N − 1− j)!
F (pL)

j(1− F (pL))
N−1−j 1

j + 1

=
1

N F (pL)

N−1∑
j=0

N !

(j + 1)! (N − 1− j)!
F (pL)

j+1 (1− F (pL))
N−1−j

=
1

N F (pL)

N∑
t=1

(
N

t

)
F (pL)

t (1− F (pL))
N−t

=
1

N F (pL)

[
1− (1− F (pL))

N
]

In a LoLA, the ex post expected payment function is

mL
i (ci, c−i) =


min {c(1)−i , pH} if ci < min {c(1)−i , pH} and pL < c

(1)
−i

1
k+1

pL if ci ≤ pL and c
(k)
−i ≤ pL < c

(k+1)
−i

0 else

(57)

and the resulting interim expected payment function is
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ML(ci) ≡
∫
[cL,cH ]N−1

mL
i (ci, c−i)

N∏
j ̸=i

f(cj) dcj

=


M̄ if ci ∈ [cL, pL]

β(ci; pH) · [1− F (ci)]
N−1 if ci ∈ (pL, pH ]

0 if ci ∈ (pH , cH ]

(58)

We have

M̄ = Q̄ · pL + [1− F (pL)]
N−1 · [β(pL; pH)− pL]

The first term in the RHS captures the fact that any bidder with type below pL wins with

probability Q̄ and is paid at least pL. The second term captures the event in which the

costs of all the bidder’s opponents exceed pL; in this case, which happens with probability

[1− F (pL)]
N−1, the bidder is paid more.

The second line in (58) holds because any type ci ∈ [pL, pH ] sells at price min
{
c
(1)
−i , pH

}
when ci < c

(1)
−i . Therefore its expected payment is∫ cH

ci

min {y, pH} dF (1)
−i (y) = β(ci; pH) · [1− F (ci)]

N−1 .

The direct revelation mechanism induced by βfL in the FPLoLA coincides with

its LoLA counterpart.

Type ci’s interim probability of winning in the direct revelation mechanism induced by βfL

is the same as the probability of winning in the FPLoLA assuming that all other bidders

follow the strategy βfL given in (54) and i bids according to βfL(ci; pL, pH). Because the

strategy βfL is strictly increasing in the region above pL and flat below pL, the regions

of the type space in which the lowest type wins with probability 1 are the same as in

the sincere equilibrium of the equivalent LoLA. Similarly, the regions in which multiple

suppliers win with positive probability are the same as in the two auctions. Therefore,

both the ex post and interim probability of winning in the FPLoLA are the same as in

the sincere equilibrium of the equivalent LoLA.

To see that the interim expected payment function in the first-price LoLA is equal to
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ML, note first that all types above pH do not bid and thus are paid zero. Next, note that

any type between pL and pH sells at price β(ci; pH) when all other suppliers bid above.

Therefore the expected payment of all types between pL and pH is β(ci; pH)·[1− F (ci)]
N−1,

as in (58). Finally, for all types below pL, the interim expected payment

bL · Q̄ =
[
Q̄− [1− F (pL)]

N−1
]
· pL + [1− F (pL)]

N−1 · β(pL; pH)

is equal to M̄ in (58).

Equivalence between FPLoLA and LoLA

Because the direct revelation mechanism induced by βfL in the FPLoLA coincides with

its LoLA counterpart, the two auction formats are equivalent in terms of buyer expected

surplus, interim expected payments, and expected profits.

βfL(ci; pL, pH) is an equilibrium in the FPLoLA

Because sincere bidding is an equilibrium in the LoLA, truthful reporting must also be an

equilibrium in the direct revelation mechanism induced in the FPLoLA by βfL(ci; pL, pH).

Equivalently, βfL(ci; pL, pH) is an equilibrium in the FPLoLA.

■

The next figure compares the equilibrium outcomes in a LoLA and its equivalent
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FPLoLA.

LoLAc2

c1

cH

cL

cHcL

pL

pL
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qL1 = 1

mL
1 = pH
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mL
1 = c2

qL1 = 1
2

mL
1 = 1

2
pL

qL1 = 0

mL
1 = 0

c2

c1

FPLoLA
cH

cL

cHcL

pL

pL

pH

pH

qfL1 = 0

mfL
1 = 0

qfL1 = 1
2

mfL
1 = 1

2
bL

qfL1 = 1

mfL
1 = bL

qfL1 = 1

mfL
1 =β(c1)
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C Numerical Analysis of Asymmetric Environments

(NOT FOR PUBLICATION)

In this appendix we solve numerically for the optimal mechanism in the two-bidder envi-

ronments described in Section 5.5. These environments are characterized by small asym-

metries in ξ2 and a around the parameter constellation ξ2 = 4 and a = 0 that defines the

symmetric case. The symmetric case is treated in Section 2.

The densities of x and y are:

f1(x; a) = a ·
(
x− 1

2

)
+ 1 and f2(y) = 1.

The buyer’s willingness to pay for suppliers 1’s good and 2’s good are

v1(x; ξ1) = v0 − ξ1 ·
(
1
2
x2 − x+ 1

3

)
and v2(y; ξ2) = v0 − ξ2 ·

(
1
2
y2 − y + 1

3

)
.

The virtual valuations are

w1(x; ξ1, a) = v1(x; ξ1)− x− F1(x)
f1(x)

= v0 − x− ξ1

(
x2

2
− x+ 1

3

)
−

a x2

2
−x (a

2
−1)

a (x− 1
2)+1

and

w2(y; ξ2) = v2(y; ξ2)− y − F2(y)
f2(y)

= v0 − 2 y − ξ2

(
y2

2
− y + 1

3

)
.

Throughout, ξ1 is set to 4. Setting ξ2 = 4 and v0 = 4
3
yields the example of Section

2. Here, we set v0 = 2 to guarantee that, when we introduce asymmetries, both virtual

valuations remain positive.

The next two sections display virtual valuations and cost distributions, and the corre-

sponding optimal auctions computed by our software application. The software solves a
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discretized version of the following auctioneer’s problem:

max
q1, q2

∫ 1

0

∫ 1

0

[w1(x, y) · q1(x, y) + w2(y, x) · q2(y, x)] f1(x) f2(y) dx dy

subject to, for all (x, y) ∈ [0, 1]2:

q1(x, y) + q2(x, y) ≤ 1

q1(·, y) nonincreasing

−q1(1, y) ≤ 0

q2(·, x) nonincreasing

−q2(1, x) ≤ 0

Section C.1 deals with parameter configurations where a is fixed at zero and ξ2 varies

in the interval (2.5, 4). Section C.2 deals with parameter configurations where ξ2 is fixed

at 4 and a varies in the interval (0, .5).

C.1 Asymmetry on ξ
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C.2 Asymmetry on f
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D Material for Section 6 (NOT FOR PUBLICATION)

D.1 Semi-parametric identification of D̂ and Ô

We seek to recover the unobserved distribution of supplier quality conditional on cost c,

that gives rise to the empirical distributions gD and gO in Figure 5. We take a guess-and-

verify approach. In the next definition we guess a semi-parametric form of the distribution

of supplier quality conditional on c; then we verify that the guess gives rise to the empirical

distributions gD and gO, as it should.

Definition 3. (guess: distribution of supplier quality conditional on supplier

cost) For any ξ ∈ [0, 1] define:

D̂ (c, ξ) =

{
δ (c) w.p. ξ

D w.p. 1− ξ

Ô (c, ξ) =

{
ω (c) w.p. ξ

O w.p. 1− ξ,

where δ (c) = G−1
D

([
1− F̂ (c)

]N)
and ω (c) = G−1

O

([
1− F̂ (c)

]N)
, and D and O are

the random variables with distributions depicted in Figure 5.

Intuitively, D̂ (c, ξ) is a random variable that represents the delay associated with a

generic supplier with cost c. With probability ξ this delay is identically equal to the num-

ber δ (c); with complementary probability this delay is a random draw from the random

variable D whose distribution is depicted in Figure 5, panel B. The same intuition holds

for Ô (c, ξ). The functions δ (c) and ω (c) are specifically constructed so that the random

variables D and O give rise to the “empirically correct marginals,” in the following sense.

Lemma 7. (verify: D̂ and Ô have the correct marginals) Denote: C(1) =

min {C1, ..., CN} . Then for any ξ ∈ [0, 1] we have: D̂
(
C(1), ξ

)
∼ D and Ô

(
C(1), ξ

)
∼ O.
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Proof. We show the proof for the random variable D.

Pr
(
δ
(
C(1)

)
≤ d
)

= Pr

[
G−1

D

([
1− F̂

(
C(1)

)]N)
≤ d

]

= Pr

[[
1− F̂

(
C(1)

)]N
≤ GD (d)

]
= Pr

[
1− [GD (d)]1/N ≤ F̂

(
C(1)

)]
= Pr

[
F̂−1

(
1− [GD (d)]1/N

)
≤ C(1)

]
Since

Pr
(
x ≤ C(1)

)
=
[
1− F̂ (x)

]N
,

then:

Pr
(
δ
(
C(1)

)
≤ d
)

=
{
1− F̂

(
F̂−1

(
1− [GD (d)]1/N

))}N

=
{
1−

(
1− [GD (d)]1/N

)}N

=
{
GD (d)1/N

}N

= GD (d) .

The proof for the random variable O is virtually identical. ■

This lemma proves that, if C is distributed according to f̂ , the delays and overruns

of a bidder with cost c are drawn from D̂ (c, ξ) and Ô (c, ξ), and there are N bidders,

then the lowest bidder’s marginal distributions of delays and overruns equals the observed

marginal distributions of D and O from Figure 5. This property holds for any value of

the parameter ξ. The parameter ξ encodes the correlation between cost and quality.

The calibrated buyer surplus function reads:

v̂(c, ξ) = const−KE
[
D̂(c, ξ) + Ô(c, ξ)

]
= const− (1− ξ)KE [D +O]− ξK [δ(c) + ω(c)]

= const(ξ)− ξK [δ(c) + ω(c)] . (59)
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D.2 Calibration of v̂

From expression (19), the calibrated buyer’s payoff reads:

v̂(c, ξ) = const(ξ)− ξK

[
G−1

D

([
1− F̂ (c)

]N)
+G−1

O

([
1− F̂ (c)

]N)]
. (60)

Our goal is to fully calibrate this function of (c, ξ). The constant const(ξ) reads, from

(59):

const(ξ) = const− (1− ξ)KE [D +O] . (61)

We set const large enough that the virtual valuation ŵ is everywhere positive,30 and K

large enough that, as ξ varies between 0 and 1, the slope of the social welfare function

(dashed red line in Figure 6) changes from positive to negative, while keeping at a mag-

nitude that is reasonable. Specifically, we set const = 1.0775 × 106 and K = 2 × 103.

With these values ŵ is always positive (albeit barely so when c is small and ξ is large).

Furthermore, the variation of the social surplus caused by a variation in supplier cost is

reasonable. Indeed, given that the standard deviation of the distribution f̂ (Figure 5,

left-hand panel) equals 4.76×104, increasing the supplier’s cost by one standard deviation

around the mean (about one tick on the c-axis in Figure 6) yields variations in social sur-

plus (dashed red line in Figure 6 ) that are plausible in magnitude, that is, not too large

relative to average cost. With this choice of const and K, the social welfare evaluated at

mean cost is of the same magnitude as the average cost for any ξ, which we view as a

reassuring sanity check.

The three quantities F̂ , GD, and GO are given in Figure 5.

The number of bidders N is set equal to 7, the average number of bidders in the (first

price) auctions studied by Decarolis (2014, 2016).

30This guarantees that the optimal LoLA does not involve a reserve price.
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Figure 8: log(F̂ ) is concave.
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E Software applications (NOT FOR PUBLICATION)

This appendix describes two software applications that we have created and made publicly

available.31 These applications compute the buyer-optimal procurement mechanisms in the

presence of quality concerns. The purpose of disseminating these applications is twofold.

First, we wish to allow business practitioners to assess whether they can benefit from a

buyer-optimal LoLA and, if so, with what floor and reserve prices. Second, for pedagogical

purposes, we want to facilitate the teaching of this paper in an engaging way.

E.1 Software 1

This software is a visually handy procedure realized in Matlab that does not require

IBM ILOG CPLEX. An Excel-based visual interface asks the user to input a probability

distribution of costs (corresponding to f(c) in our theoretical model), a function v(c)

(corresponding to v(c, ξ) for some fixed ξ), and the number of bidders N . The application

assumes that bidder costs are drawn independently from the cost distribution, and requires

that v(cL) > cL. The application’s output displays the buyer and social surplus functions

as a function of the LoLA floor price pL, and displays the optimal floor and reserve prices

(analogous to the right-hand panel of Figure 6). The program also displays the ratio

between the social (or buyer) surplus under a LoLA with reserve price pL, over a first

price auction.

The user specifies three inputs in an excel spreadsheet called “Input.xlsx”, as shown

in Figure 9 (where input cells are colored in orange). There are four inputs: (i.) the

minimum cost cL (cell D21) and the maximum cost cH (cell M21) used by the spreadsheet

to automatically generate a linear cost grid with 10 nodes, (ii.) the 10 relative weights

used to infer the cost distribution f(c) (cells D20:M20), (iii.) the 10 values that represent

the willingness to pay v(c) (cells R20:AA20), and (iv.) the number of bidders N (cell

R25).

31Downloadable from https://www.alessandrotenzinvilla.com/research.html.
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Figure 9: The figure shows the inputs of the visual program that solves for the optimal LoLA among all
LoLAs.

The Matlab script “FindOptimalLola.m” (which needs to be located in the same folder

of the input file “Input.xlsx”) reads the 4 aforementioned inputs and calculates the virtual

valuation function w. The script also re-samples all inputs on a grid with T = 100 nodes

to increase the precision of the calculation. Given a grid {ci}Ti=1, the virtual valuation w

is calculated as {
wi = vi − ci, i = 1

wi = vi − ci − (ci − ci−1) · Fi

fi
, ∀i > 1

(62)

The result for w is showed to the user as in figure 11. The user is asked to check whether

w is single-peaked in accordance to assumption 1.
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Figure 10: The figure shows w and it involves the user’s participation by asking whether or not w is
single-peaked.

If the user clicks “yes” the procedure continues, otherwise it stops as assumption 1 is

violated. If “yes” is clicked, the procedure checks whether w has a root. If it does have

a root, the software shows it in a new pop-up window as shown by figure 12. Hence, the

software asks for the user’s confirmation to set the root of w as a reservation price pH .
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Figure 11: The figure shows the root of w calculated with a solver and using piece-wise linear interpo-
lation on w. It involves the user’s participation by acknowledging the root will be used as the reservation
price.

Hence, the procedure iterates on all possible floor prices {pL,j}Tj=1 between cL and cH .

For each floor price pL,j, it calculates the associated buyer surplus
∑T

i=1 wi · fi · Qi,j and

social surplus
∑T

i=1(vi−ci)·fi ·Qi,j. Note that Qi,j = Q(ci, pL,j, pH) is calculated piece-wise

as in equation 28 and it is function of the number of bidders N . The script terminates by

showing the two resulting surpluses, optimal prices and benchmarks against the associated

First Price Auction (FPA). The program shows results as reported in figure 12 and 13.
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Figure 12: The figure shows the buyer surplus and social surplus in function of the floor price pL,j . The
points at which these functions are maximized correspond to the respective optimal LoLAs. In addition,
the reservation price is also reported.

Figure 13: The figure shows the final report with the optimal floor and reservation prices.

E.2 Software 2

This software is realized in Matlab and IBM ILOG CPLEX. The application requires

the same inputs as Software 1, and it computes the optimal mechanism even when that

mechanism is not a LoLA. Therefore, Software 2 dispenses with Assumption 1 and with the

requirement that v(cL) > cL. The application yields the buyer-optimal direct revelation

mechanism, expressed through the interim probability Q(c) that a generic bidder with cost
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c wins the auction. This application is helpful to deal with settings where assumptions

made in the paper are violated, and so Theorem 1 does not apply.

The entry point is “main.m”. There are 5 inputs: (i.) the number of nodes T of the

cost grid, (ii.) the minimum cost cL, (iii.) the maximum cost cH , (iv.) a vector of the

willingness to pay [v1, · · · , vT ], (v.) a vector of the cost distribution [f1, · · · , fT ].

Given a distribution f , the virtual valuation is calculated as in (62). Then, the software

passes all inputs to the script “CallCPLEX.m” in order to solve the linear program. This

script generates two files: (i.) AMPL and (ii.) DAT.

The AMPL’s file tells CPLEX how to generate the objective function and all con-

straints. In particular, it embeds the logic to generate: (i.) the demand constraints, (ii.)

the non-negativity constraints, and (iii.) the monotonicity constraints.32 The DAT’s file

specifies all numerical inputs.

Then, the program calls CPLEX to perform the high-scale optimization.

32CPLEX is preferable to Matlab because the optimization problem is large.
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